p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.96C24, C42.138C23, C22.156C25, C4⋊C4.338C23, (C2×C4).146C24, (C4×D4).259C22, (C2×D4).344C23, (C2×Q8).321C23, (C4×Q8).246C22, C4⋊1D4.122C22, C4⋊D4.126C22, C22⋊C4.122C23, (C2×C42).980C22, (C22×C4).415C23, C22⋊Q8.132C22, C42.C2.90C22, C2.67(C2.C25), C22.58C24⋊5C2, C42⋊2C2.28C22, C4.4D4.185C22, C22.56C24⋊19C2, C42⋊C2.254C22, C22.34C24⋊29C2, C23.36C23⋊64C2, C22.46C24⋊43C2, C22.33C24⋊27C2, C22.47C24⋊42C2, C22.D4.40C22, (C2×C4⋊C4).730C22, SmallGroup(128,2299)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.156C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=a, f2=g2=ba=ab, dcd=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 676 in 475 conjugacy classes, 378 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C23.36C23, C22.33C24, C22.34C24, C22.46C24, C22.47C24, C22.56C24, C22.58C24, C22.156C25
Quotients: C1, C2, C22, C23, C24, C25, C2.C25, C22.156C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 15)(2 16)(3 13)(4 14)(5 18)(6 19)(7 20)(8 17)(9 57)(10 58)(11 59)(12 60)(21 34)(22 35)(23 36)(24 33)(25 30)(26 31)(27 32)(28 29)(37 51)(38 52)(39 49)(40 50)(41 46)(42 47)(43 48)(44 45)(53 61)(54 62)(55 63)(56 64)
(1 47)(2 43)(3 45)(4 41)(5 51)(6 38)(7 49)(8 40)(9 33)(10 21)(11 35)(12 23)(13 44)(14 46)(15 42)(16 48)(17 50)(18 37)(19 52)(20 39)(22 59)(24 57)(25 54)(26 63)(27 56)(28 61)(29 53)(30 62)(31 55)(32 64)(34 58)(36 60)
(1 31)(2 27)(3 29)(4 25)(5 34)(6 22)(7 36)(8 24)(9 52)(10 39)(11 50)(12 37)(13 28)(14 30)(15 26)(16 32)(17 33)(18 21)(19 35)(20 23)(38 57)(40 59)(41 56)(42 61)(43 54)(44 63)(45 55)(46 64)(47 53)(48 62)(49 58)(51 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 5 13 20)(2 6 14 17)(3 7 15 18)(4 8 16 19)(9 62 59 56)(10 63 60 53)(11 64 57 54)(12 61 58 55)(21 31 36 28)(22 32 33 25)(23 29 34 26)(24 30 35 27)(37 44 49 47)(38 41 50 48)(39 42 51 45)(40 43 52 46)
(1 20 13 5)(2 17 14 6)(3 18 15 7)(4 19 16 8)(9 64 59 54)(10 61 60 55)(11 62 57 56)(12 63 58 53)(21 26 36 29)(22 27 33 30)(23 28 34 31)(24 25 35 32)(37 44 49 47)(38 41 50 48)(39 42 51 45)(40 43 52 46)
G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,57)(10,58)(11,59)(12,60)(21,34)(22,35)(23,36)(24,33)(25,30)(26,31)(27,32)(28,29)(37,51)(38,52)(39,49)(40,50)(41,46)(42,47)(43,48)(44,45)(53,61)(54,62)(55,63)(56,64), (1,47)(2,43)(3,45)(4,41)(5,51)(6,38)(7,49)(8,40)(9,33)(10,21)(11,35)(12,23)(13,44)(14,46)(15,42)(16,48)(17,50)(18,37)(19,52)(20,39)(22,59)(24,57)(25,54)(26,63)(27,56)(28,61)(29,53)(30,62)(31,55)(32,64)(34,58)(36,60), (1,31)(2,27)(3,29)(4,25)(5,34)(6,22)(7,36)(8,24)(9,52)(10,39)(11,50)(12,37)(13,28)(14,30)(15,26)(16,32)(17,33)(18,21)(19,35)(20,23)(38,57)(40,59)(41,56)(42,61)(43,54)(44,63)(45,55)(46,64)(47,53)(48,62)(49,58)(51,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,5,13,20)(2,6,14,17)(3,7,15,18)(4,8,16,19)(9,62,59,56)(10,63,60,53)(11,64,57,54)(12,61,58,55)(21,31,36,28)(22,32,33,25)(23,29,34,26)(24,30,35,27)(37,44,49,47)(38,41,50,48)(39,42,51,45)(40,43,52,46), (1,20,13,5)(2,17,14,6)(3,18,15,7)(4,19,16,8)(9,64,59,54)(10,61,60,55)(11,62,57,56)(12,63,58,53)(21,26,36,29)(22,27,33,30)(23,28,34,31)(24,25,35,32)(37,44,49,47)(38,41,50,48)(39,42,51,45)(40,43,52,46)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,57)(10,58)(11,59)(12,60)(21,34)(22,35)(23,36)(24,33)(25,30)(26,31)(27,32)(28,29)(37,51)(38,52)(39,49)(40,50)(41,46)(42,47)(43,48)(44,45)(53,61)(54,62)(55,63)(56,64), (1,47)(2,43)(3,45)(4,41)(5,51)(6,38)(7,49)(8,40)(9,33)(10,21)(11,35)(12,23)(13,44)(14,46)(15,42)(16,48)(17,50)(18,37)(19,52)(20,39)(22,59)(24,57)(25,54)(26,63)(27,56)(28,61)(29,53)(30,62)(31,55)(32,64)(34,58)(36,60), (1,31)(2,27)(3,29)(4,25)(5,34)(6,22)(7,36)(8,24)(9,52)(10,39)(11,50)(12,37)(13,28)(14,30)(15,26)(16,32)(17,33)(18,21)(19,35)(20,23)(38,57)(40,59)(41,56)(42,61)(43,54)(44,63)(45,55)(46,64)(47,53)(48,62)(49,58)(51,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,5,13,20)(2,6,14,17)(3,7,15,18)(4,8,16,19)(9,62,59,56)(10,63,60,53)(11,64,57,54)(12,61,58,55)(21,31,36,28)(22,32,33,25)(23,29,34,26)(24,30,35,27)(37,44,49,47)(38,41,50,48)(39,42,51,45)(40,43,52,46), (1,20,13,5)(2,17,14,6)(3,18,15,7)(4,19,16,8)(9,64,59,54)(10,61,60,55)(11,62,57,56)(12,63,58,53)(21,26,36,29)(22,27,33,30)(23,28,34,31)(24,25,35,32)(37,44,49,47)(38,41,50,48)(39,42,51,45)(40,43,52,46) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,15),(2,16),(3,13),(4,14),(5,18),(6,19),(7,20),(8,17),(9,57),(10,58),(11,59),(12,60),(21,34),(22,35),(23,36),(24,33),(25,30),(26,31),(27,32),(28,29),(37,51),(38,52),(39,49),(40,50),(41,46),(42,47),(43,48),(44,45),(53,61),(54,62),(55,63),(56,64)], [(1,47),(2,43),(3,45),(4,41),(5,51),(6,38),(7,49),(8,40),(9,33),(10,21),(11,35),(12,23),(13,44),(14,46),(15,42),(16,48),(17,50),(18,37),(19,52),(20,39),(22,59),(24,57),(25,54),(26,63),(27,56),(28,61),(29,53),(30,62),(31,55),(32,64),(34,58),(36,60)], [(1,31),(2,27),(3,29),(4,25),(5,34),(6,22),(7,36),(8,24),(9,52),(10,39),(11,50),(12,37),(13,28),(14,30),(15,26),(16,32),(17,33),(18,21),(19,35),(20,23),(38,57),(40,59),(41,56),(42,61),(43,54),(44,63),(45,55),(46,64),(47,53),(48,62),(49,58),(51,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,5,13,20),(2,6,14,17),(3,7,15,18),(4,8,16,19),(9,62,59,56),(10,63,60,53),(11,64,57,54),(12,61,58,55),(21,31,36,28),(22,32,33,25),(23,29,34,26),(24,30,35,27),(37,44,49,47),(38,41,50,48),(39,42,51,45),(40,43,52,46)], [(1,20,13,5),(2,17,14,6),(3,18,15,7),(4,19,16,8),(9,64,59,54),(10,61,60,55),(11,62,57,56),(12,63,58,53),(21,26,36,29),(22,27,33,30),(23,28,34,31),(24,25,35,32),(37,44,49,47),(38,41,50,48),(39,42,51,45),(40,43,52,46)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2J | 4A | ··· | 4F | 4G | ··· | 4AA |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2.C25 |
kernel | C22.156C25 | C23.36C23 | C22.33C24 | C22.34C24 | C22.46C24 | C22.47C24 | C22.56C24 | C22.58C24 | C2 |
# reps | 1 | 3 | 6 | 6 | 6 | 6 | 3 | 1 | 6 |
Matrix representation of C22.156C25 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 |
0 | 0 | 0 | 0 | 4 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 3 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 |
0 | 0 | 0 | 0 | 2 | 0 | 4 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,1,0,1],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,4,0,0,0,0,0,0,2,0,4,0,0,0,0,3,0,3,0,0,0,0,0,0,3,0,3],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,4,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;
C22.156C25 in GAP, Magma, Sage, TeX
C_2^2._{156}C_2^5
% in TeX
G:=Group("C2^2.156C2^5");
// GroupNames label
G:=SmallGroup(128,2299);
// by ID
G=gap.SmallGroup(128,2299);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,184,2019,570,360,1684,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=a,f^2=g^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations